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ARTICLE

Simultaneously Correcting for Population Stratification and
for Genotyping Error in Case-Control Association Studies
K. F. Cheng and W. J. Lin

In population-based case-control association studies, the regular x2 test is often used to investigate association between
a candidate locus and disease. However, it is well known that this test may be biased in the presence of population
stratification and/or genotyping error. Unlike some other biases, this bias will not go away with increasing sample size.
On the contrary, the false-positive rate will be much larger when the sample size is increased. The usual family-based
designs are robust against population stratification, but they are sensitive to genotype error. In this article, we propose
a novel method of simultaneously correcting for the bias arising from population stratification and/or for the genotyping
error in case-control studies. The appropriate corrections depend on sample odds ratios of the standard tables of2 # 3
genotype by case and control from null loci. Therefore, the test is simple to apply. The corrected test is robust against
misspecification of the genetic model. If the null hypothesis of no association is rejected, the corrections can be further
used to estimate the effect of the genetic factor. We considered a simulation study to investigate the performance of the
new method, using parameter values similar to those found in real-data examples. The results show that the corrected
test approximately maintains the expected type I error rate under various simulation conditions. It also improves the
power of the association test in the presence of population stratification and/or genotyping error. The discrepancy in
power between the tests with correction and those without correction tends to be more extreme as the magnitude of
the bias becomes larger. Therefore, the bias-correction method proposed in this article should be useful for the genetic
analysis of complex traits.
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Population-based case-control studies provide a powerful
approach to identify the multiple variants of small effect
that modulate susceptibility to common, complex dis-
eases. However, the major shortcoming of these studies
arises from the presence of population stratification (PS).
When cases and controls have different allele frequencies
attributable to diversity in background population, un-
related to the disease being studied, the study is said to
have PS. PS is probably the most-often-cited reason for
nonreplication of genetic association studies, since un-
detected PS can mimic the signal of association and lead
to more false-positive findings or miss real effects.1,2 Be-
sides these factors, often mentioned in the literature, an
often-overlooked factor influencing the performance of
case-control design is the presence of genotyping error
(GE). Such error is important because without some
method of correction, the power to detect association and
thus to map genes may be significantly decreased.3–6

Family-based designs are robust against PS. However,
under the assumption of no or small PS, case-control stud-
ies have been shown to be more powerful than family-
based designs.7,8 Unfortunately, it is rarely clear when PS
can be ignored. The existence of PS, in general, weights
against the use of case-control designs. Using population-
based data, Devlin and Roeder9 proposed an association
method, termed “genomic control” (GC), to automatically

correct for the effects caused by PS and cryptic relatedness.
Another computationally more extensive approach for
correcting the effects of PS is the structured association
(SA) method.10 Both GC and SA methods require geno-
typing at additional null loci to perform the tests. Bacanu
et al.11 claimed that the transmission/disequilibrium test
(TDT) is more powerful when population substructure is
substantial and that the GC is more powerful otherwise.
However, a recent study by Campbell et al.12 showed that
both standard GC and SA methods failed to correct for
the confounding effects of PS. The original TDT, GC, and
SA methods are not intended to correct the bias due to
GE. Recently, extensions of TDT methods to correct for
nondifferential genotype error have been proposed.5,13–15

Clayton et al.16 also suggested that the idea of GC can be
generalized to correct for the effects of differential errors
in measurement of genotype. In their application, the var-
iance inflation factor is not constant but depends on extra
measures of genotyping accuracy, such as the half-call rate
and the absolute difference in call rates between cases and
controls.

The GC method is based on the assumption that vari-
ance inflation factor is approximately constant across
the genome for all null loci. However, many results17–19

showed that the regular x2 statistic for testing indepen-
dence follows a noncentral x2 distribution asymptotically
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under stratified populations, even when there is no true
association. They also showed that the noncentrality pa-
rameter can be large even when Wright’s20 is small.Fst

Here, measures a sort of inbreeding coefficient, or het-Fst

erozygote deficit, that is due to population subdivision. A
new correction for PS was recently suggested by Epstein
et al.21 using substructure-informative loci, instead of the
usual null loci. This method was shown to have improved
performance but was not designed to protect against the
confounding effects of GE.

It is well known that, for a single SNP locus, if the GE
is random nondifferential with respect to affected status,
then there is no effect on the expected type I error rate.
However, its effect on the power is well recognized. Clay-
ton et al.16 pointed out that there might exist different
error rates in genotype scoring between case and control
samples. Under this circumstance, Moskvina et al.6 used
simulations showing that, even with very low error rates,
differential error rates can result in false-positive rates
much greater than 0.05. The effect was maximal for loci
with small minor-allele frequency.4,22 The bias caused by
PS and/or GE can be substantial, and it will not go away
with increasing sample size. In fact, the false-positive rate
will be much larger when the sample size is increased. The
purpose of this article is to suggest a novel method that
can automatically correct for the effects arising from PS
and/or GE in case-control studies, only at the price of
genotyping a panel of null loci. We remark that the usual
approach for correcting the bias caused by GE is to assume
an error model and often requires repeated genotyping or
validation data. In contrast, the method proposed here
does not depend on either an error model or validation
data. To the best of our knowledge, this is the first article
that gives a systematic study of the joint effect of PS and
GE and provides a workable solution for correcting the
related bias in case-control association studies.

In this article, we point out that, under the null hy-
pothesis of no association, the confounding effect caused
by PS depends on the sampling proportions and genotype
frequencies of the subpopulations. In the special case of
simple random sampling, it also depends on the disease
risks in subpopulations. We show how to use information
from null loci to estimate the PS effect efficiently and, on
that basis, suggest a genotype-based x2 test (with 2 df)
(hereafter called the “CS” test) for testing the existence of
association. This method is very simple to apply and can
be easily extended to provide a point (and interval) esti-
mation of the genetic effect if the null hypothesis of no
association is rejected.

When there are genotyping errors, the CS test also can
correct the bias caused by GE. This is because the likeli-
hood functions for testing the null hypothesis of no as-
sociation under GE and PS have the same form. We will
give reasons showing why this is true. In fact, even in
situations where error rates are not constant within or
between case and control samples, the CS test can still be
applied to test no association. When there is no PS and

GE, the CS test automatically reduces to the regular x2 test
if the sizes of the case and control samples are large. This
means that the CS test is a natural extension of the regular
x2 test for correcting the effects of PS and/or GE.

In this article, we also present simulation results, to il-
lustrate the performance of the CS test. Under various
simulation parameter values—which were very similar to
those found in real-data examples—for PS and/or GE, the
CS test was shown to approximately maintain the ex-
pected false-positive rate. In contrast, the regular x2 test
tended to have inflated type I error rates. In most simu-
lated instances, the CS test also showed improved power
performance. Often, the increases in power were very sig-
nificant. We report simulation results for the CS test on
the basis of data from the candidate locus and 50 ran-
domly selected null loci. Evidence from the simulation
study also indicates that no advantage can be found by
using a greater number of null loci in the analysis.

Material and Methods
CS Test for Correcting Bias Caused by Population
Stratification

In case-control studies, the data for each locus are given in a
standard table of genotype by case and control. Let2 # 3 D p

denote that the individual has the disease and otherwise.1 D p 0
Let G (equal to 0, 1, or 2) denote the number of copies of the
high-risk candidate allele carried by the individual. The primary
interest is to test whether there exists association between the
genetic risk factor G and disease D. We assume that the general
population comprises K subpopulations, and covariable S is used
to indicate the subpopulation to which a person belongs. We
postulate the risk model23

( )Pr D p 1FG p g,S p s
log p m � m � b . (1)s g[ ]( )Pr D p 0FG p g,S p s

For identifiability, we define and to be zero, so thatm b s p 11 0

and represent the referent subpopulation and genotype,g p 0
respectively. Model (1) assumes S to be a confounder, not an effect
modifier.

In the presence of PS, one can show (appendix A) that even
when there exists no association between G and D, the ratio of
the case and control genotype frequencies can be expressed as

( )Pr G p gFD p 1
∗ ∗( )pexp a � b , (2)g( )Pr G p gFD p 0

where but parameters and depend on the geno-∗ ∗ ∗b p 0 b b0 1 2

type frequency and the sampling proportionsPr (G p gFS p s)
and of the diseased and non-∗ ∗P (S p sFD p 1) P (S p sFD p 0)

diseased individuals, respectively, from subpopulation S (see
eqs. (A2) and (A3) in appendix A for the exact definition of ).∗bg

Note that the values of , , and∗ ∗P (S p sFD p 1) P (S p sFD p 0)
are assumed to be unknown, but they are notPr (G p gFS p s)

required to be estimated in the analysis. According to model (2),
and are log odds ratios of the table under no associ-∗ ∗b b 2 # 31 2

ation. Thus, can be used to measure the level of PS.∗ ∗ ∗b p (b ,b )1 2

Model (2) implies that, even when there is no true association
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between G and D, the case and control genotype frequencies
cannot be identical if PS exists (i.e., does not equal zero). This∗b

makes the regular x2 statistic for testing independence in a 2 #

table produce spurious association. In view of the definition of3
in appendix A, if one can identify genetically distinct subpop-∗bg

ulations and uses a design so that the sampling proportions are
identical in the cases and controls (i.e., ∗P (S p sFD p 1) p

), then the false-positive rate of the regular x2 test∗P (S p sFD p 0)
will not be elevated, since no PS effect ( ) exists in this case.∗b p 0
Otherwise, the effect of PS might be severe because of the different
sampling proportions used in the cases and controls. Note that,
in the special case of simple random sampling, the level of PS
also depends on the disease risks in subpopulations (see eq. (A4)
in appendix A).

The level of PS is locus dependent. We use to denote the∗b (l)
level of PS corresponding to the lth null locus, . Thel p 1, … ,L
idea of the CS test is to first combine estimates of the PS∗b̂ (l)
levels at the null loci, to define a reasonable estimate of ,∗ ∗b̃ b

the PS level at the candidate locus. Next, using model (2), we
define the CS test statistic (denoted by “ ”) to be the regular2 ∗˜X (b )
likelihood-ratio test statistic for testing based on ge-∗ ∗ ∗˜H :b p b0

notype data at the candidate locus. Define and to beN (g) N (g)0 1

the numbers of individuals in the control and case samples, re-
spectively, with genotype at the candidate locus. UnderG p g
model (2), the retrospective likelihood function24 is

2 N (g)�N (g)0 11 N (g)1∗ ∗( )L p # exp a � b .[ ]� g∗ ∗[ ]( )gp0 1 �exp a � bg

Let be the maximum likelihood under constraint and∗ ∗L̂ (H ) H0 0

be the maximum likelihood under no constraint. The CS testL̂
statistic is defined as . By use of existing2 ∗ ∗˜ ˆ ˆX (b ) p 2 log [L/L (H )]0

software packages, the CS test statistic can be computed easily.
The corresponding P value of the test is , where2 2 ∗˜P p Pr [x 1 X (b )]2

has a x2 distribution with 2 df.2x2

In this article, we define estimate to be the usual log of∗b̂ (l)
the sample odds ratio (maximum-likelihood estimate), using

genotype data at the lth null locus. Conceptually, if sub-2 # 3
population genotype frequencies at the candidate locus approx-
imately match those at the null loci, then the usual mean or
median of can be a good estimate of . However, it is dif-∗ ∗b̂ (l) b

ficult to verify this condition in real applications. Instead, we
assume to be unknown but a smooth function of the genotype∗b

frequencies in the controls (at least approximately) and suggest
using a nonparametric regression technique25 to estimate . We∗b

let the sample genotype frequencies of the candidate locus and
lth null locus in the controls be denoted by and , re-P (g) P (g)0 l

spectively, and define the difference of the two frequencies as
. A nonparametric regression estimate of is∗d (g) p P (g) � P (g) bl 0 l

defined as . This is a weighted average of ,L∗ ∗ ∗˜ ˆ ˆb p � b (l) W b (l)llp1

with weights defined as

K[d (0)/b ]K[d (1)/b ]l n l nW p .Ll � K[d (0)/b ]K[d (1)/b ]′ ′l n l n′l p1

The weights are determined by “window size” and the “qua-b 1 0n

dratic kernel” .2K(t) p 3(1 � t )I(FtF � 1)/4
It is well known that the performance of the nonparametric

regression estimate is insensitive to the use of kernel function.
However, it depends on the window size. We suggest that an
optimal be selected so that the proposed CS test applied tobn

each null locus can approximately maintain the correct type I
error rate. To this end, for the lth null locus, we let 2P p Pr {x 1l 2

denote the P value, where the nonparametric regression2 ∗˜X [b (l)]}
estimate is computed from the genotype data at the re-∗b̃ (l)
maining null loci, with fixed. Next, for a prespecifiedL � 1 bn

level of significance a, we propose choosing an optimal (abn

dependent) from (0,1) so that is minimized.L�1FL � I (P ! a) � aFllp1

A free software (CS test software) for computing optimal window
size , an estimate of , and the final P value of the CS test is∗b bn

available at Cheng’s software Web site.

CS Test for Correcting Bias Caused by Genotyping Error

In this section, we show that the CS test also can be applied to
correct the bias caused by GE in case-control studies. For sim-
plicity, we assume that case and control samples have differential
genotype error rates, but it is understood that our approach can
be applied under more-general error modeling. For example, our
approach still works even when there are differential error rates
within the case (or control) sample. Let (equal to 0, 1, 2) beGo

the observed genotype, subject to genotyping error. We assume
that the error rates are inPr (G p g FG p g, D p 1) p f (g ; g)o o 1 o

the case sample and in thePr (G p g FG p g, D p 0) p f (g ; g)o o 0 o

control sample. Thus, if one defines W (g ,g) p f (g ; g) Pr (G p1 o 1 o

and , then, undergFD p 1) W (g ,g) p f (g ; g) Pr (G p gFD p 0)0 o 0 o

no true association, one can show that the ratio of the case and
control genotype frequencies is

Pr (G p g FD p 1)o o p log (d � g ) , (3)goPr (G p g FD p 0)o o

where parameters and depend on andg g W (g ,g) W (g ,g)1 2 0 o 1 o

(appendix B), and their values may be nonzero if error rates
and are not identical. Thus, even under the nullf (g ; g) f (g ; g)1 o 0 o

case, there may exist nonzero log odds ratios in the table.2 # 3
In this case, there exists bias because of GE. On the other hand,
if error rates and are identical, then there is nof (g ; g) f (g ; g)1 o 0 o

effect on the expected type I error rate, since .g p g p 01 2

Suppose that, using the same genotyping technique, we also
have genotype data from the null loci. For the lth null locus, let
the corresponding bias be denoted by . This biasg(l) p [g (l),g (l)]1 2

also can be estimated by use of the log of the sample odds-ratios
from the lth null loci (denoted by ). Next, using the sameĝ(l)
principle as above, we also define estimate of the bias toĝ (g ,g )1 2

be a weighted average of . Thus, on the basis of the observedĝ(l)
table at the candidate locus, the regular likelihood-ratio2 # 3

test for testing under model (3) is exactly iden-∗ ˆ ˆH :(g ,g ) p (g ,g )0 1 2 1 2

tical to the CS test defined above. It is important to note that
errors may not be distributed evenly across all loci—that is, the
error rates are also locus dependent. Some loci may show error
rates that are many times higher than those shown by other loci.25

However, the validity of the CS test does not require error rates
to be identical across candidate and null loci. We conclude that,
in an association analysis, the CS test can be applied to correct
for PS and GE simultaneously.

Simulations

We conducted several simulations to investigate the performance
of the CS test and the regular x2 test without adjustment (hereafter
called the “CS*” test) under PS and/or GE. We included the CS*
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test in the study so that the empirical level of the bias caused by
PS and/or GE could be measured.

There are three factors affecting the level of PS (appendix A):
(i) the sampling proportions for each subpopulation among cases
and controls, (ii) the allele frequency at the candidate locus in
each subpopulation (under the assumption that the Hardy-Wein-
berg condition holds in each subpopulation), and (iii) the pen-
etrances of the candidate locus in each subpopulation. In our
simulation study, the general population was assumed to com-
prise two subpopulations, and the case data were sampled from
the first and second subpopulations with probabilities q p

and , respectively, and∗ ∗P (S p 1FD p 1) 1 � q p P (S p 2FD p 1)
the control data were sampled from the first and second sub-
populations with probabilities and∗1 � q p P (S p 1FD p 0)

, respectively. Three q values were used: 0.5,∗q p P (S p 2FD p 0)
0.7, and 1.0. corresponds to the case of no PS effect, sinceq p 0.5
the level of PS is zero. corresponds to the case with theq p 1.0
most severe PS effect. In this situation, case and control samples
were drawn from two different subpopulations. Zheng et al.27 also
considered this extreme case in their simulation study.

The allele frequency at the candidate locus was chosen to be
for the first subpopulation and for thep p 0.30 p p 0.30 � t1 2

second subpopulation. A large difference, t, between the allele
frequencies in the two subpopulations means that a large bias
due to PS occurs in the study. In the simulations, , 0.05,t p 0.03
and 0.10 were considered, representing the range from weak PS
to strong PS. Note that, on the basis of the International Project
on Genetic Susceptibility to Environmental Carcinogenes data-
base, Garte et al.28,29 pointed out the differences in allele fre-
quencies within white populations from different countries are
much smaller (e.g., ) but more significant among whites,t � 0.05
Asians, and African Americans. For example, the allele frequency
of the CYP3A4-V gene, which is thought to be related to prostate
cancer, was highest among Nigerians (87%), lowest among Eu-
ropean Americans (10%), and intermediate among African Amer-
icans (66%).30 Therefore, our choices of frequency differences are
consistent with real-data examples.

Finally, in the null and power simulations, the same pene-
trances were used for the two subpopulations. Under null sim-
ulations, identical penetrances were used. Un-f p f p f p 0.100 1 2

der power simulations, penetrances andf p 0.01 f p f p 0.250 1 2

were used for the dominant genetic model, andf p f p 0.100 1

were used for the recessive genetic model, andf p 0.30 f p2 0

, , and were used for the additive genetic0.10 f p 0.20 f p 0.301 2

model. Note that the penetrances are defined as f p Pr (D pg

, and similar values were also considered in the simu-1FG p g)
lation study by Zheng et al.27

Next, according to the definition of the bias caused by GE (eq.
(3)), there are three factors affecting the bias level: (i) the genotype
frequencies of the cases and controls, (ii) error models, and (iii)
error rates. The genotype frequencies were defined above. Two
error models were considered in the simulations. The first model
is the symmetric allele-dropout error model,5 determined by one
error rate, �. This model assumes that one misclassifies homo-
zygotes twice as frequently as heterozygotes. The second model
is the allele-based error model,12 determined by two error rates,

and . In this model, the high-risk allele has constant prob-� �1 2

ability of being coded as a normal allele, and a normal allele�1

has constant probability of being coded as a high-risk allele.�2

In the simulations, the same error model was used for the cases
and controls to generate misclassified genotype data, but with
different error rates. In the allele-based error model, the error rates

used for the cases were and , but and� p 0 � p 0.01 � p 0.051 2 1

, 0.03, 0.05 were used for the controls. On the other� (p �) p 0.012

hand, in the symmetric allele-dropout error model, the error rate
used for the cases was 0.01, but error rates , 0.03, 0.05� p 0.01
were used for the controls. Only under the symmetric allele-drop-
out error model with does there exist no GE effect on� p 0.01
type I error rate. Note that Tintle et al.31 reported that an 8% error
rate is the maximum genotyping error rate when the missing
genotype is included in the calculation of the genotyping error
rate. On the other hand, Abecasis et al.32 considered error rates
�0.05 to be moderate. Thus, the error rates used in our study are
in a reasonable range.

The CS test also depends on the genotype data from the null
loci. In our study, the observed genotype at the null loci were
also generated from the same simulation model as for the can-
didate locus, but with different allele frequencies and genotype
error rates. Specifically, under both the null and the power sim-
ulations, the penetrances used were . The allelef p f p f p 0.100 1 2

frequencies of the null loci in the ith subpopulation were ran-
domly generated from a uniform random variable, U (p �i

, where and values were given above and values ofn, p � n) p pi 1 2

n were taken to be 0.00, 0.03, 0.05, 0.07, and 0.09. cor-n p 0.00
responds to the scenario that the simulated candidate and null
loci were perfectly matched. On the other hand, large n values
indicate that the candidate and null loci were poorly matched.
We remark that the usual method for generating loci has been
based on the beta-binomial distribution.9,27 The allele frequen-
cy was generated from beta distribution beta[(1 � F )p/F ,(1 �st st

, where p is the minor allele frequency. If orF )(1 � p)/F ] p p pst st 1

and , then allele frequencies generated fromp F p 0.05 U (p �2 st i

, , are between 35 and 70 percentile points of then, p � n) n � 0.05i

beta distribution. Therefore, beta-binomial and uniform distri-
bution–generating mechanisms essentially give similar results in
the study. The error models for generating misclassified genotype
data at the null loci were also identical to that for the candidate
locus. However, the genotyping error rates at the null loci were
randomly selected from a uniform random variable between

and , where � is givenmax (� � 0.02, 0.0) min (� � 0.02, 0.05)
above.

Under the given simulation conditions, we generated case and
control genotype data biased by PS and/or GE. The numbers of
cases and controls were both equal to 100 for the null and power
simulations. The effect of PS and/or GE was corrected by use of
L (equal to 50, 60, 70, 80, 90, or 100) null loci in the simulations.
Estimates of type I error rates and powers were based on 2,000
replications. For a particular null or power simulation, each es-
timate is the proportion of the replicates for which the test sta-
tistic exceeds .2x (0.05)2

Results
Empirical Type I Error Rates

Results for the simulated type I error rates are presented
in figures 1 and 2 under the symmetric allele-dropout error
model and the allele-based error model, respectively. The
results for the CS test are based on the use of nullL p 50
loci. Later, we show that using other numbers of null loci
produces similar conclusions. The bias level caused by PS
and/or GE can be measured by the difference of the sim-
ulated type I error rate of the CS* test and 0.05. Note that

corresponds to the case of no PS and thatq p 0.5 � p



Figure 1. Curves of the empirical type I errors under the symmetric allele-dropout error model. The solid lines are for the cases where
the second subpopulation has allele frequency at the candidate locus, dashed lines for the cases with , and thep p 0.33 p p 0.352 2

dotted lines for the cases with p p 0.42



Figure 2. Curves of the empirical type I errors under the allele-based error model. The solid lines are for the cases where the second
subpopulation has allele frequency at the candidate locus, dashed lines for the cases with , and the dotted linesp p 0.33 p p 0.352 2

for the cases with .p p 0.42
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corresponds to the case of no GE, if the underlying0.01
error model is the symmetric allele-dropout error model.
Under the former condition, we have , and,∗ ∗b p b p 01 2

if the latter condition holds, we have . There-g p g p 01 2

fore, under the symmetric allele-dropout error model with
and , the CS* test should approximatelyq p 0.5 � p 0.01

achieve the expected type I error rate in the simulations.
According to our results in the upper left panel of figure
1, the corresponding empirical type I error rates of the CS*
test range from 0.048 to 0.062. This shows that our sim-
ulation study has very reasonable quality. In general, the
CS* test tends to have elevated type I errors when PS and/
or GE exists. For example, in the case of PS but no GE (see
fig. 1 under the cases of ), the largest type I error� p 0.01
rate is 0.441, which occurs in the case of . Onp p 0.402

the other hand, in the case of GE but no PS (see figs. 1
and 2 under the cases of ), the largest empiricalq p 0.5
type I error rate of the CS* test is 0.113, which occurs in
the case of under the symmetric allele-dropout� p 0.05
error model. However, under the allele-based error model,
the largest type I error rate is only 0.076, showing mild
inflation in the false-positive rate. Finally, if both PS and
GE exist in the association study, the largest empirical type
I error rate of the CS* test was increased to 0.661, which
occurs in the case of , , and un-q p 1.0 p p 0.40 � p 0.012

der the allele-based error model (upper right panel of fig.
2). From these results, it is also seen that the existence of
PS causes more severe bias in an association study than
does the existence of GE. The level of PS increases as the
difference of the sampling proportions (for subpopula-
tions) in cases and controls or the difference of the allele
frequencies in subpopulations increases. Similarly, the bias
level of GE increases as the difference of the error rates
(measured by in the symmetric allele-dropout er-� � 0.01
ror model and by in the allele-based error model)0.05 � �

increases.
Next, inspecting the curves of the type I error rates for

the proposed CS test in figures 1 and 2, we find that the
performance of the CS test is very stable and that the type
I errors are very close to the expected value (0.05) under
all simulation conditions. For example, in the case of PS
but no GE (fig. 1), the type I error rates of the CS test range
from 0.40 to 0.56; in the case of GE but no PS, they range
from 0.43 to 0.59 (figs. 1 and 2). If PS and GE exist si-
multaneously, the corresponding range is 0.40–0.59.
These results are still very satisfactory. We note that the
CS test shows very reasonable performance for type I error
rates, even when the maximum deviation of the allele
frequencies among the candidate and selected null loci is
as large as 0.09. This suggests that, when the CS test is
applied, the allele frequencies of the candidate and null
loci are not required to be matched. Our optimal choice
of window size automatically excludes unnecessary nullbn

loci from analysis.

Empirical Powers

The powers of the two tests depend on the genetic model
and the level of PS and/or GE. In general, the CS* test
tends to have smaller powers under a larger level of PS.
For example, in the case of no GE (under the symmetric
allele-dropout error model) the smallest power of the CS*
test under a recessive genetic model (fig. 3) is 0.816 if there
is no PS, but it becomes 0.728 under mild PS ( )q p 0.70
and 0.498 under more-severe PS ( ).Using the sameq p 1.0
genetic and error models, we find that the smallest power
is only 0.204 when there is a joint effect of PS and GE. If
one uses the same symmetric allele-dropout error model,
but the genetic models are additive or dominant, the
smallest powers of the CS* test are equal to 0.303 and
0.668, respectively (see figs. 4 and 5 under case q p 1.00
and ).� p 0.05

Under the allele-based error model, the power perfor-
mance of the CS* test is similar. First, the power also tends
to decrease as the level of PS increases. However, the small-
est power of the CS* test is 0.469 under the recessive ge-
netic model, 0.091 under the additive model, and 0.377
under the dominant model (figs. 6–8). In contrast, under
the same simulation conditions but with no PS (q p

), the corresponding smallest power increases to0.50
0.689, 0.631, and 0.742 under recessive, additive, and
dominant models, respectively. It is of interest that the
percentage decrease in power (from no PS, , toq p 0.50
more-severe PS, ) of the CS* test under the ad-q p 1.00
ditive model is ∼86%. However, under the same level of
PS, the largest percentage change in power of the CS* test
is only ∼6% for the recessive model, 44% for the additive
model, and 14% for the dominant model, because of the
different genotyping error rates. This shows that, under
the allele-based error model (and under the symmetric
allele-dropout error model; see figs. 3–5), PS has a more
serious effect on the power performance of CS* than does
GE.

Regarding the performance of the CS test, it is important
to note that, if there exist PS and/or GE, the new test tends
to have much larger power than the unadjusted CS* test.
For example, the largest power difference of the two tests
is 0.69, and the relative increase in power is 1525%. This
occurs in the case of an additive genetic model under

and (fig. 7). It is also of interest that theq p 1.00 � p 0.05
power performance of the new test is very robust against
the underlying genetic model. Its powers are approxi-
mately independent of the PS level, genotyping error rate,
and frequency difference between different loci. For ex-
ample, except in the case of a dominant genetic model
and the symmetric allele-dropout error model, the range
of the powers of the CS test is only 0.70–0.88. In the
former case, the powers are in the range 0.814–0.930. The
smallest power (0.70) of the CS test occurs in the case of
a recessive genetic model under more-severe PS and the
largest error rate (see the case of and inq p 1.00 � p 0.05
fig. 3). In comparison, under the same conditions, the



Figure 3. Curves of the powers under the recessive genetic model and symmetric allele-dropout error model. The solid lines are for
the cases where the second subpopulation has allele frequency , dashed lines for the cases with , and the dottedp p 0.33 p p 0.352 2

lines for the cases with .p p 0.42



Figure 4. Curves of the powers under the additive genetic model and symmetric allele-dropout error model. The solid lines are for
the cases where the second subpopulation has allele frequency , the dashed lines for the cases with , and thep p 0.33 p p 0.352 2

dotted lines for the cases with .p p 0.42



Figure 5. Curves of the powers under the dominant genetic model and symmetric allele-dropout error model. The solid lines are for
the cases where the second subpopulation has allele frequency , the dashed lines for the cases with , and thep p 0.33 p p 0.352 2

dotted lines for the cases with .p p 0.42



Figure 6. Curves of the powers under the recessive genetic model and allele-based error model. The solid lines are for the cases where
the second subpopulation has allele frequency , the dashed lines for the cases with , and the dotted lines for thep p 0.33 p p 0.352 2

cases with .p p 0.42



Figure 7. Curves of the powers under the additive genetic model and allele-based error model. The solid lines are for the cases where
the second subpopulation has allele frequency , the dashed lines for the cases with , and the dotted lines for thep p 0.33 p p 0.352 2

cases with .p p 0.42



Figure 8. Curves of the powers under the dominant genetic model and allele-based error model. The solid lines are for the cases
where the second subpopulation has allele frequency , the dashed lines for the cases with , and the dotted linesp p 0.33 p p 0.352 2

for the cases with .p p 0.42
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Table 1. Empirical Type I Errors of the CS Test
with Different Numbers of Null Loci

Error Model,
,a q,b and vcp2

Type I Error for Ld p

50 60 70 80 90 100

Symmetric allele-dropout:
.33:

.70:
.03 .057 .047 .043 .048 .043 .057
.05 .047 .046 .043 .047 .048 .049

1.00:
.03 .048 .053 .045 .041 .044 .045
.05 .046 .041 .042 .042 .041 .041

.35:
.70:

.03 .050 .047 .051 .048 .054 .045

.05 .052 .040 .051 .043 .041 .052
1.00:

.03 .047 .049 .053 .042 .041 .046

.05 .045 .052 .057 .044 .042 .043
.40:

.70:
.03 .050 .050 .052 .051 .043 .042
.05 .056 .051 .058 .052 .051 .051

1.00:
.03 .510 .044 .043 .043 .041 .042
.05 .420 .047 .051 .048 .048 .051

Allele-based:
.33:

.70:
.03 .050 .055 .050 .052 .055 .059
.05 .054 .047 .054 .056 .053 .040

1.00:
.03 .058 .052 .053 .052 .050 .043
.05 .049 .041 .056 .042 .042 .045

.35:
.70:

.03 .055 .052 .052 .059 .049 .045

.05 .045 .049 .056 .047 .048 .050
1.00:

.03 .056 .051 .046 .053 .050 .040

.05 .044 .044 .044 .041 .043 .044
.40:

.70:
.03 .054 .053 .053 .049 .056 .047
.05 .045 .046 .046 .056 .043 .053

1.00:
.03 .048 .056 .048 .043 .046 .041
.05 .050 .040 .045 .043 .045 .041

a Allele frequency of the second subpopulation.
b Proportion of the diseased (nondiseased) individuals sampled from

the first (second) subpopulation.
c Maximum deviation of the allele frequencies among the candidate

and null loci in each subpopulation.
d L p number of null loci used for computing the CS test.

power of the CS* test is only 0.40. Under no PS and no
GE ( and in fig. 3) and if the allele fre-q p 0.50 � p 0.01
quencies of the candidate and null loci are perfectly
matched, the new test has a minimum power of 0.825,
which occurs in the case of a recessive genetic model. In
contrast, the corresponding power of the CS* test is 0.816.
That is, even when no systematic bias exists, the new test
is still slightly better than the regular test.

Null Loci

Our previous reports about the empirical type I errors and
powers were based on the use of 50 null loci for computing
the CS statistic. In table 1, we report empirical type I error
rates of the CS test on the basis of the use of different
numbers of null loci ( , 60,…,100). Recall that, inL p 50
principle, if the allele frequencies and genotyping error
rates of the candidate and null loci are approximately
identical in each subpopulation, then one needs only a
few null loci to correct for the bias caused by PS and GE.
However, if the allele frequencies or error rates differ too
much among the candidate and null loci, then the use of
too many unnecessary null loci in the analysis might lead
to poor performance of the corrected association test. In
this article, we suggest using an optimal window size bn

to determine useful null loci for analysis. Thus, some ge-
notype data from the null loci might be excluded from
estimations of the bias. The results from table 1 show that
the CS test with the use of the optimal window size has
the desired performance, since the CS test shows very sta-
ble type I error rates under different numbers of null loci.
Inspecting table 1, we find that the largest difference in
the type I error rates between the CS test with 50 and 100
null loci is !1% in the case of the symmetric allele-dropout
error model and 1.5% in the case of the allele-based error
model. In fact, all empirical type I error rates presented in
table 1 are in the range 0.040–0.058. This conclusion
shows that 50 null loci are sufficient for correcting the
bias caused by PS and/or GE if the CS test is applied in
the association study.

Discussion

A recent article by Clayton et al.16 showed, in an analysis
of a case-control study of type I diabetes in Great Britain,
that population structure explained part of the significant
11.2% inflation of test statistics, and differential bias in
genotyping scoring between case and control DNA sam-
ples explained the remainder of the inflation. It is well
known that the regular x2 test in a case-control study is
sensitive to PS and GE. In contrast, the usual TDT is not
sensitive to PS, but its false-positive rate may be elevated
because of GE.13,26 In this article, we have proposed a novel
method to correct simultaneously for the biases caused by
PS and GE in case-control studies. The bias can be esti-
mated using a weighted average of the log of the sample
odds ratios, which are computed from tables of the2 # 3

null loci. By use of this estimate, the CS test is defined as
a likelihood-ratio test. If the null hypothesis of no asso-
ciation is rejected, the effect of the genetic factor can also
be estimated, through application of equation (A2) in ap-
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pendix A. The computation of our test statistic is simple,
and the availability of an enormous number of null loci
can provide many opportunities to apply our method.

Khlat et al.33 argued that, under realistic scenarios—in
which subpopulations account for �0.10 of the study pop-
ulation and allelic frequency differences are �0.20—the in-
flation of the type I error is of limited concern. However,
we show that, under general sampling of cases and controls,
genotype frequencies and sampling proportions ∗P (S p

and of the subpopulation deter-∗sFD p 1) P (S p sFD p 0)
mine the level of PS (appendix A). In the case of simple
random sampling, one can show that the level of PS also
depends on the disease risks of the subpopulations. Our
result implies that, if one can identify genetically distinct
subpopulations and select identical sampling proportions
in cases and controls ( ),∗ ∗P (S p sFD p 1) p P (S p sFD p 0)
then the false-positive rate of the regular x2 test will not be
inflated. Otherwise, even under the scenario considered by
Khlat et al.,33 the effect of PS might be severe because of
different sampling proportions being used in the cases and
controls.

In the presence of PS, one popular approach to preserving
the nominal type I error rate is to apply the GC method.
This method attempts to adjust the variance of the Coch-
ran-Armitage (CA) trend test by calculating the statisticwith
data from the null loci. However, many published results
indicated that, in some situations (e.g., when the PS level
is large), this approach may not be satisfactory.19 One im-
portant reason is that, in the presence of PS, the regular x2

statistic has a noncentral x2 distribution, and dividing the
noncentral x2 by a constant does not always produce a cen-
tral x2. The GC method is also sensitive to GE, since the
test statistic in GC depends on the CS* statistic.

Epstein et al.21 used a stratification-score approach for
controlling the stratification. Their stratification scores de-
pend on the use of generalized least squares and data from
substructure-informative loci. On the other hand, Gor-
roochurn et al.19 proposed an approach, called the “d-cen-
tralization” (DC) method, to correct for PS by using data
from null loci, similar to our method. They suggested es-
timating the square root of the noncentrality parameter
directly and the adjusted statistic to produce a central x2.
The success of the DC method depends crucially on
whether the noncentrality parameter can be estimated ac-
curately. If the candidate and null loci are well matched,
in the sense that they have similar genotype frequencies
in subpopulations, then this approach can successfully
eliminate the effect of PS. However, on the basis of the
available data, it is not easy to verify this condition. The
DC method suggests choosing null loci so that their ge-
notype frequencies are within a window of size 0.10 to
that at the candidate locus. However, under the same sim-
ulation conditions considered in this article, our unre-
ported results show that sometimes the DC test is con-
servative, although its general performance is better than
that of the GC method. One drawback of the DC method
is that it depends on the CA trend test. However, the CA

trend test is not robust against misspecification of the ge-
netic model. For example, the CA trend test, which is
optimal under the dominant genetic model, may perform
poorly under the recessive genetic model. Our unreported
simulation results show that, under the dominant and
additive genetic models, the smallest empirical powers of
the DC test, which is efficient in power under the dom-
inant genetic model, are 0.935 and 0.841, respectively, in
the case of no GE (under the symmetric allele-dropout
error model with ). However, under the recessive� p 0.01
genetic model, the corresponding powers range from
0.121 to 0.255. This shows that the DC test has poor per-
formance in power when the underlying genetic model is
misspecified. In general, the DC-type tests based on d-cen-
tralizing any CA trend test have similar drawbacks. The
DC-type tests are not robust against GE.

Theoretical results indicate that the performance of the
CS test is robust to the error model. In our simulations, we
have considered two error models for alleles. In fact, a ran-
dom-genotype error model34 was also investigated in the
simulations but is not reported. Under this model, each
genotype was randomly replaced with another genotype,
in a manner proportional to genotype frequencies. We as-
sumed that each genotype has a constant probability, �,
of being misclassified, and we selected for the� p 0.01
case sample and , 0.03, and 0.05 for the control� p 0.01
sample. The rest of the parameter values were defined as
in the “Simulations” section. According to the simulated
results, the type I error rates of the CS test are also in the
range 0.04–0.059, the same as that reported in the “Em-
pirical Type I Error Rates” section. Under the dominant
genetic model, the range of the powers of the CS test is
0.873–0.929. If the genetic model is recessive or additive,
the range becomes 0.791–0.909. Note that the correspond-
ing ranges reported in the “Empirical Powers” section are
0.814–0.930 and 0.70–0.88. This shows that the CS test is
indeed not sensitive to the choice of error model.

The CS test can be applied to admixture populations.
However, unlike for the method suggested by Pritchard et
al.,10 one does not need to infer details of population struc-
ture and to estimate the ancestry of sampled individuals
before applying the CS test. The test also holds under the
general risk model of Epstein et al.21 It is of interest that,
if necessary, the CS test can be modified further to incor-
porate stratification variables, such as ethnicity. Stratified
analysis often can reduce the level of PS and makes the
bias caused by PS smaller and more uniform among the
candidate and null loci. Under this scenario, the CS test
should be more efficient. Stratified analysis can be done by
first classifying the sample into more-homogeneous groups
and by then applying the suggested method separately for
each group. The final test statistic is a combination of the
CS statistics for different groups. For example, suppose the
case-control sample is stratified into R strata. Let be the2Xr

CS test statistic for the rth stratum. These statistics are
independent; hence, under the null hypothesis, 2X p

is asymptotically distributed as a central x2 with 2RR 2� Xrrp1
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df. The modified CS test suggests using to test the null2X
hypothesis of no association. Our initial simulation results
(not reported here) show that the CS test with stratification
sometimes outperforms the CS test without stratification,
but the difference in their powers is not very significant.
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Appendix A
Using model (1) and Bayes theorem, the ratio of the case and control genotype frequencies can be written as

( )Pr G p gFD p 1,S p s
log p a � a � b , (A1)s g[ ]( )Pr G p gFD p 0,S p s

where

( ) ( ) ( )Pr D p 0FS p s Pr D p 1FS p 1 Pr D p 0FS p 1
a p m � log and a p m � log .s s [ ] [ ]( ) ( ) ( )Pr D p 1FS p s Pr D p 0FS p 1 Pr D p 1FS p 1

Next, with application of equation (A1), the case genotype frequency can be written as

K

∗( ) ( ) ( ) ( ) ( )Pr G p gFD p 1 pexp b Pr G p gFD p 0,S p s P S p sFD p 1 exp a � a{ }�g s
sp1

and the control genotype frequency as

K

∗( ) ( ) ( )Pr G p gFD p 0 p [Pr G p gFD p 0,S p s P S p sFD p 0 ] .�
sp1

The ratio of these two frequencies leads to model

( )Pr G p gFD p 1
∗ ∗( ) ( ) ( )pexp b H g pexp a � b � b , (A2)g g g( )Pr G p gFD p 0

with , , and∗ ∗a p logH (0) b p log [H (g) /H (0)]g

K
∗( ) ( )� [Pr G p gFD p 0,S p s exp(a � a )P S p sFD p 1 ]s

sp1( )H g p .K
∗( ) ( )� [Pr G p gFD p 0,S p s P S p sFD p 0 ]

sp1

If there is no true association, then and ; hence, can be written asb p b p 0 exp(a � a ) p 1 H (g)1 2 s

K
∗( ) ( )� [Pr G p gFS p s P S p sFD p 1 ]

sp1( )H g p . (A3)K
∗( ) ( )� [Pr G p gFS p s P S p sFD p 0 ]

sp1

If observations in the case and control samples were collected under simple random sampling, then can be furtherH (g)
simplified as

K

( ) ( ) ( ) ( )Pr D p 0 � [Pr G p gFS p s Pr D p 1FS p s Pr S p s ]
sp1( )H g p . (A4)K

( ) ( ) ( ) ( )Pr D p 1 � [Pr G p gFS p s Pr D p 0FS p s Pr S p s ]
sp1
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Appendix B
We assume that the error rates are in the case sample andPr (G p g FG p g, D p 1) p f (g ; g) Pr (G p g FG p g,o o 1 o o o

in the control sample. Thus, if one defines andD p 0) p f (g ; g) W (g ,g) p f (g ; g)Pr (G p gFD p 1) W (g ,g) p0 o 1 o 1 o 0 o

, then, under no true association, the ratio of the case and control genotype frequencies canf (g ; g)Pr (G p gFD p 0)0 o

be expressed as

Pr (G p g FD p 1)o o p exp(d � g ) ,goPr (G p g FD p 0)o o

where

2 2 2 2

g p log W (g ,g) # W (0,g) / W (0,g) # W (g ,g)� � � �( ) ( )g 1 o 0 1 0 oo [ ]gp0 gp0 gp0 gp0

and

2 2

d p log W (0,g)/ W (0,g) .� �1 0[ ]
gp0 gp0

If one applies equation (A2) to replace by in the definition of∗ ∗Pr (G p gFD p 1) exp(a � b � b ) #Pr (G p gFD p 0)g g

, then one can expressggo

g p b � d ,g g go o o

where and is defined as , but with replaced with . Here, are the∗ ∗ ∗d p g � b g g W (g ,g) f (g ,g)Pr (G p g FD p 0) bg g g g g 1 o 1 o o go o o o o o

true log odds ratios between disease and genetic factor, and and are the effects caused by PS and GE, respectively.∗ ∗b gg go o

Web Resource

The URL for data presented herein is as follows:

Cheng’s software, http://www2.cmu.edu.tw/˜biostat/downloads/
KFCpro/KFCprogram.htm
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